837 research outputs found

    Design of the VISITOR Tool: A Versatile ImpulSive Interplanetary Trajectory OptimizeR

    Get PDF
    The design of trajectories for interplanetary missions represents one of the most complex and important problems to solve during conceptual space mission design. To facilitate conceptual mission sizing activities, it is essential to obtain sufficiently accurate trajectories in a fast and repeatable manner. To this end, the VISITOR tool was developed. This tool modularly augments a patched conic MGA-1DSM model with a mass model, launch window analysis, and the ability to simulate more realistic arrival and departure operations. This was implemented in MATLAB, exploiting the built-in optimization tools and vector analysis routines. The chosen optimization strategy uses a grid search and pattern search, an iterative variable grid method. A genetic algorithm can be selectively used to improve search space pruning, at the cost of losing the repeatability of the results and increased computation time. The tool was validated against seven flown missions: the average total mission (Delta)V offset from the nominal trajectory was 9.1%, which was reduced to 7.3% when using the genetic algorithm at the cost of an increase in computation time by a factor 5.7. It was found that VISITOR was well-suited for the conceptual design of interplanetary trajectories, while also facilitating future improvements due to its modular structure

    Mission Applications of a HIAD for the Mars Southern Highlands

    Get PDF
    Recent discoveries of evidence of a flowing liquid in craters throughout the Mars Southern Highlands, like Terra Sirenum, have spurred interest in sending science missions to those locations; however, these locations are at elevations that are much higher (0 to +4 km MOLA) than any previous landing site (-1 to -4 km MOLA). New technologies may be needed to achieve a landing at these sites with significant payload mass to the surface. A promising technology is the hypersonic inflatable aerodynamic decelerator (HIAD); a number of designs have been advanced but the stacked torus has been recently successfully flight tested in the IRVE-2 and IRVE-3 projects through the NASA Langley Research Center. This paper will focus on a variety of mission applications of the stacked torus type attached HIAD to the Mars southern highlands

    Lunar and Mars Ascent and Descent/Entry Crew Abort Modes for the Hercules Single-Stage Reusable Vehicle

    Get PDF
    The Hercules single-stage reusable vehicle is designed to support crewed missions to both the lunar surface and Mars surface. The design maximizes crew safety by providing full coverage crew abort capability during ascent and entry/descent, either through abort-to-surface or abort-to-orbit. This paper outlines each of the abort modes and discuss the Hercules vehicle design along with the base and orbital infrastructure required to enable the full coverage abort capability. For each abort mode, trajectory simulations are flown that illustrate the requisite design capabilities and highlight the sensitivity to key design variables

    Optimizing Parking Orbits for Roundtrip Mars Missions

    Get PDF
    A roundtrip Mars mission presents many challenges to the design of a transportation system and requires a series of orbital maneuvers within Mars vicinity to capture, reorient, and then return the spacecraft back to Earth. The selection of a Mars parking orbit is crucial to the mission design; not only can the parking or-bit choice drastically impact the V requirements of these maneuvers but also it must be properly aligned to target desired surface or orbital destinations. This paper presents a method that can optimize the Mars parking orbits given the arrival and departure conditions from heliocentric trajectories, and it can also en-force constraints on the parking orbits to satisfy other architecture design requirements such as co-planar subperiapsis descent to planned landing sites, due east or co-planar ascent back to the parking orbit, or low cost transfers to and from Phobos and Deimos

    Framework for the Parametric System Modeling of Space Exploration Architectures

    Get PDF
    This paper presents a methodology for performing architecture definition and assessment prior to, or during, program formulation that utilizes a centralized, integrated architecture modeling framework operated by a small, core team of general space architects. This framework, known as the Exploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), enables: 1) a significantly larger fraction of an architecture trade space to be assessed in a given study timeframe; and 2) the complex element-to-element and element-to-system relationships to be quantitatively explored earlier in the design process. Discussion of the methodology advantages and disadvantages with respect to the distributed study team approach typically used within NASA to perform architecture studies is presented along with an overview of EXAMINE s functional components and tools. An example Mars transportation system architecture model is used to demonstrate EXAMINE s capabilities in this paper. However, the framework is generally applicable for exploration architecture modeling with destinations to any celestial body in the solar system

    Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars

    Get PDF
    Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability

    Viability of a Reusable In-Space Transportation System

    Get PDF
    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented

    2016 Decadal Update of the NASA ESTO Lidar Technologies Investment Strategy

    Get PDF
    We describe the 2016 update of the NASA Earth Science Technology Office (ESTO) investment strategy in the area of lidar technologies as pertaining to NASAs Earth Science measurement goals in the next decade

    Crow Deaths Caused by West Nile Virus during Winter

    Get PDF
    In New York, an epizootic of American crow (Corvus brachyrhynchos) deaths from West Nile virus (WNV) infection occurred during winter 2004–2005, a cold season when mosquitoes are not active. Detection of WNV in feces collected at the roost suggests lateral transmission through contact or fecal contamination

    Entry, Descent and Landing Systems Analysis Study: Phase 1 Report

    Get PDF
    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the motivation, approach and top-level results from Year 1 of the study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) missio
    corecore